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1. INTRODUCTION AND PRELIMINARIES

In the following we are concerned with an interpolation problem which is
closely related to the classical theorem of G. P61ya on two-point inter
polation 131.

We recall briefly the content of this theorem:
Let an interval la, b I and n linear functionals 6 i , ...,6 11 be given which are

of the form y~i:fl--t fUI(X), with x = a or x = band °<J <n - 1. If these
are considered as functionals on the space PII i of real polynomials of
degree at most n - I, then they are linearly independent if and only if the
following condition, now called P6lya's condition, is fulfilled:

For i = 0, ... , n - I, at least i + I of the given functionals y;j) have an order

J with °<J < i.
Equivalent to 6, ,... ,6

11
being linearly independent is the existence of a

basis of polynomials Ai"'" A II in PI! I which are biorthonormal to the given
functionals: 6i(AJ = 6ij (i,J = 1,... , n). It is probably well known that none of
these polynomials has a zero in the open interval (a, b), so that as a function
on [a, b I each of them has a unique sign. The question of how one could
read these signs immediately from the l5/s gave rise to the present paper.

It is a natural approach at this question to replace one of the above "pure"
functionals /jl by a "mixed" condition of the form (I - a LV~' ± ay\J ' il.
and to see what happens if a runs through 10, 11. In this way one can replace
y~) by y;i T

II, and similarly y~/) by Yh j
(, without losing control on the signs of

the basic polynomials, and eventually one arrives at the set
1y~iI 10< i < n - I f whose basic polynomials all have positive sign. By
counting all sign changes one obtains the signs of the original polynomials.

This argument is based on an interpolation problem with only one mixed
condition, but two-point interpolation with several mixed conditions of the
form ay~) + fJy~jl (x, z E {a, b l, Ii - JI< I) can be treated almost as easily.

This will be done in Section 2 of the paper.
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In their survey article Ilion Hermite-Birkhoff interpolation, Karlin and
Karon mentioned the case of mixed conditions as an open question. Theorem
2.3 below may be considered as a reply to that question, if only in a rather
restricted situation.

In the other two sections of the paper, the basic polynomials for the inter
polation problem of Section 2 are discussed. An estimate on the number of
their zeros is given and their signs are being determined for some cases in
which they exist.

Throughout the paper, we fix a finite interval la, b I. Let D = 1° 1 , •••• on f be
a set of n linear functionals of the form 0; = L~n 1 ak y~/) with 0 <.J I <. ... <.

Jm <. 11- I and a k * 0, X k E {a, b} for all k. Call JI the order of such a
functional. When speaking of linear independence of D, we take its elements
as linear functionals on Pn I' Linear independence thus means that for all
fEP n - l • fo/=O, there is at least one i, 1 <,i<.n, with 0;(1)*0 or,
equivalently, that the determinant IDI = 10;(xj-I)l u I..... n does not vanish.

Let M j be the number of functionals in D of order at most j. The proof of
the following lemma is almost identical to that of P61ya for the pure case. so
we refer the reader to [31 or 14) for details.

LEMMA 1.1. If D is linearly independent. then Polya's condition holds:

M;?;;J + I (j = 0...., 11 - I). I

Evidently, in the mixed case the P61ya condition is no longer sufficient
for linear independence. As an example, consider D = {Yo, Y I + ay; ,
yfJ+pv;i. The determinant of the matrix (O;(.'(j-I));.; I.2.J is iDi=
-I ~ 2a + fJ. A very crude sufficient condition for ID I* 0 is a?;; 0 and
fJ <. O. It is by this kind of conditions that we can ensure the linear indepen
dence of the sets D in the next section without having to compute a deter
minant.

2. A SUFFICIENT CONDITION FOR LINEAR INDEPENDENCE

Let g be a real-valued CI-function on la, bl, let z be the number of zeros
of g in the open interval (a, b) and z' the number of zeros of g' in (a. b).

Consider the following five conditions on g, where m = I or m = 2. a?;; 0
and fJ ?;; 0:

(I) g(a) ~ ag'(a) = O.

(2) g(a) + (-I Y ag(b) = 0,

(3) g(a) ~ (_1)=~m ag'(b) = O.

(4) g(b)+f3g'(b)=O,

(5) g(b) + (-ly+mf3g'(a)=O.
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We shall need the following elementary lemma whose proof IS

straightforward and will be omitted.

LEMMA 2.1. Let m be either 1 or 2. If m = 1, suppose that at least one of
the above five conditions holds. If m = 2, suppose that one of the conditions
(l), (2), (3) and one of (4), (5) holds. If, for m = 2, (3) and (5) are supposed
to hold, we also assume z = O. Then

z';?-z+m-l. I

We remark that for m = 2, z ;?- I. conditions (3) and (5) in general do not
imply z' ;?- z + I.

Now let us fix a set E of n linear functionals of the form y;/I or y~)

(0 <,j <, n - 1) which fulfils P6lya's condition: M j ;?- j + 1 for j = 0,... , n - l.
Also, put M 1 = 0 and let mj denote the number of functionals in E which
have the order j.

To E we relate a set D of mixed linear functionals in the following way:

(A) If y:/l E: E, then one and only one of the following functionals is
in D, where a = a(a,j) > 0:

Y
,U)
a , YY) + a(-l)Mj I j y~j),

y~j) +a(-1 )'lfj (f I 1) .v1/ . I I

(B) If y1j
) E: E, then one and only one of the following functionals is

in D, where p= P(b,j) > 0:

v U )
J b '

It is convenient to refer to them as pure, lateral. transversal, and diagonal
conditions, respectively.

We also ask the following restriction on D:

(C) If mj = 2, that is if there are two conditions of order j in D, then
they may not both be diagonal unless M j I = j, and if both are transversal,
they must not be proportional.

Such a set D obviously meets Polya's condition. An inequality which is
familiar in connection with that condition persists in our setting:

PROPOSITION 2.2. Let D have properties (A)-(C). Let fE: en [a, b I fulfil
(j(f) = 0 for all (j E: D and denote the number of zeros off U) in (a, b) by n j •

Then

nj;?-Mj_1-j (j = 0,..., n - 1).
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Proof We use induction by j. For j = 0, nothing is to show, so let us
suppose that the inequality is true for some j, 0 ~j ~ 11 - 2. If mj = 0, then
by Rolle's theorem Il j4 1 ~ Il j - 1 ~ M j _ 1 - j - 1 = M j - (j + 1). If m j = I,
M j ~ (j + I) = M j _ I - j. Hence the induction step is trivial if Ilj = 0 or
I1 j > M j _ 1 - j ~ I, by Rolle's theorem. If Il j = M j _ 1 - j, we can apply
Lemma 2.1 to g =fUl, putting m = I and z = M;_ J - j. We obtain flH 1~ 11;,

which is clearly sufficient.
If mj = 2 we have M j - (j + I) = M j _ I - j + 1, so by Rolle's theorem

again there is no problem if nj >M j - (j + I). If nj = M j - (j + I), we can
apply Lemma 2.1 to g =f U ) with m = I and z = M j - (j + 1), provided that
not both order j conditions are transversal. But this case is equivalent to
having two pure conditions, by (C), so it can be excluded. If Ilj = M; _ I - j,
Lemma 2.1 with g = fU), m = 2, and z = M j I - j applies. This shows
11; , I ~ M j - (j + I), and the proof is complete.· I

Now we are in the position to prove our first theorem.

THEOREM 2.3. If the set D has properties (A)-(C), thell it is linearly
indepel1dent.

Proof Let f be a polynomial of degree j, 0 ~j ~ fl - I, which fulfils
6(1) = 0 for all 6 E D. It suffices to show f= O. Let us assume the contrary.
If there were no mixed conditions of order j in D, then the number N j of
zeros of pj) in [a, b I would be N; = nj + m; ~ M; _1 - j + mj = MJ - j) 1,

whereas N j = 0 as pj) =c *' O. A lateral or diagonal condition of order j is
impossible aspJ+ I) =0 andpj)(a) *' O,pj)(b) *' O. Hence there should be a
transversal condition of order j in D, and by 0 = fl j ~ M j _ I - j ~ 0 we get
pil(a) + apJ)(b) = c( 1 + a) = 0 for some a> O. This contradicts c et' 0, thus
our assumption is disproved. I

Lemma 2.1 and hence the proof of Theorem 2.3 do not work in the case of
two diagonal conditions of an order j with M j 1 - j > O. In fact. the
conclusion of our theorem is not true in this case. Take D = j Yo .1'1' y() +
ay~', y~ - fJ.v~}, which for a, fJ > 0 satisfies our conditions (A) and (B), but
not (C), because M J - I - j = 1 for j = 1. Its associated determinant is ID I =
l2afJ - 2a - 2fl - 1. which can be zero not only for a > 0 and fJ > 0 but for
any prescribed signs of a and fl. Therefore the choice of signs in (A) and (B)
cannot be made in a way that includes this exceptional case.

3. ZEROS OF THE BASIC POLYNOMIALS

Let D = ;6 1 ,,,,, 6n } be a set of functionals having properties (A )--(C) of the
last section. Then the system of equations x J

I = L:' 1 6;(x j
I) Ai
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(j = 1,..., n) has a unique set of solutions A 1''''' A It in Pn- l' the basic
polynomials of D. Obviously, they are biorthonormal to the functionals:
I5;(A)=l5ij (i,j= I,... ,n).

For studying the eigenvalue problem yI") = AY, l5 i(y) = °(i = I, ... , n) as
well as for other applications (for instance, in the next section), it would be
desirable to know when the basic polynomials have no zeros in (a, b).

While this holds in the pure case, it is by no means true in general, not
even in very simple examples like D = 1Yo + .1'1' Yb [, where A I(X) =~.
A 2(x)=x-i·

In some mixed cases, however, the following estimate is sufficient to show
that the basic polynomials indeed have no zeros in (a, b).

For i = I,... , n, leti; be the degree of Ai and Si the number of conditions in
D whose order is at most ij - I and who are either transversal, or diagonal,
or equal to l5 i . Put Si=O if ii=O. Let Zi be the number of zeros of Ai in
(a, b).

THEOREM 3.1. For i = I,... , n the following estimate holds:

Zi ~ Si - (Mii 1- jJ.

Proof We may assume ji ~ 1. By Vex), resp. U(x), let us denote the
number of sign changes, resp. sign constancies, in the sequence a(x) = (A/x),
A;(x), A ['(x), ... , AVi)(X)), zeros being discarded. By the Budan-Fourier
theorem [2, p. 65], Ai has at most V(x)- V(y) zeros in any half-open
interval (x,yl. If a(a) contains any zero terms, say, A~k>Ca)=

A~k+ l>Ca) = ... = AV)(a) = 0, A jj+ I) *- 0, then for x = a + c with sufficiently
small {; >°the sequence a(x) contains no zeros, the signs of Ajtnl(a) and
A ~tn)(x) coincide for all m, °~ m ~ji with A ~tn)(a) *- 0, and the terms AV)(x),
A~k+I)(X),...,A~j+I)(X) all have the same sign. This is an immediate conse
quence of the Taylor formula. Likewise, if a(b) contains zero terms, say.
A~k)(b) =A~k+I)(b)= ... =A~j)(b) = 0, AV+ I)(b) *- 0, then for y = b - c with
c >°sufficiently small, the sequence a( y) contains no zeros, the signs of the
non-zero terms in a(b) coincide with their counterparts in a(y). and the
sequence A~k)(y),A~k+I)(y),...,AV~I)(y) alternates in sign. Especially, for
any pure condition y~) E D, j ~ji - I, y~!) *- l5 i , the terms A~jl(x) and
AVr j I(X) have equal signs, and for y~iI E D, j ~ji -. 1, y~i) *- 15 i' the signs of
AV)(y) and A ~j+ l)(y) are opposite. Also, every lateral condition at a which
is unequal 15; corresponds to an equality of two subsequent signs in a(x) and
every lateral condition at b, different from l5 i , corresponds to a sign change
in aCYl. Hence, if Pi is the number of pure or lateral conditions in D which
are different from (ji and whose order is at most);- 1, then

Pi ~ U(x) + V{y).
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ji = U(x) -+ Vex)

Zi':;;; Vex) - V(y)
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for sufficiently small values of E: >a by the Budan-Fourier th(:orem, we
obtain

But S; -+ Pi = M j ,_ I by definition, so the theorem is proved. I

The following immediate consequence will be used in the next section.

COROLLARY 3.2. If D contains no transversal or diagonal condition oj
order j, a ':;;;j ,:;;; n - 2, then none oj the basic polynomials has a zero in (a, b).

Proof In that case, Si = a for i = I, ... , n. I
In the classical case, where all conditions are pure, this result can be

obtained more easily using a theorem of Schoenberg: If one assumes that
A;(x) = a for some x E (a, b), then the conditions OJ E D, j =1= i, together with
Yx constitute a quasi-Hermite interpolation system, and hence A; == a by
Theorem 2 of 14], contradicting 0i(A i) = I.

We remark that the estimate Z i ,:;;; V(a) - V(b), which seems to be the most
natural way to apply the Budan-Fourier theorem, does not lead to a proof of
Theorem 3.1, even if Ai(b) =1= O. In the example D = j Yo,y] -+ Yh,Y: ,y;'} the
polynomial A] according to 01=YO is A](x)=:l(3-(x-I)J). Here,
V(O) - V( I) = 2, but Theorem 3. I correctly predicts Z I = O.

4. SIGNS OF THE BASIC POLYNOMIALS

In the situation of Corollary 3.2, let the sign of the basic polynomial A; in
the interval ra, b1 be D;.

LEMMA 4. I. The signs E: 1"'" Dn are determined by the underlying set E of
pure conditions.

Proof For i = I, ..., n, the functional 0i E D is of the form y\~') -+ a;y~~')'

subject to restrictions (A)-(C) in Section 2 and, in particular, with y~;i) being
in E. For 0':;;; t':;;; I, consider the set D( consisting of oi = y;~i) -+ ta; y~~')

(i = I...., n). Then Do = E and D, = D, and Dr satisfies the condition of



294 A. CLAUSING

Corollary 3.2 as D does, so that its fundamental polynomials A ~ have no
zeros in (a, b). Now fix some x E (a, b). The function t i--+ A ;(x) on 10. II is
continuous as A ~(x) is the solution of a system of linear equations whose
coefficients depend continuously on t and whose determinant never vanishes.
As A :(x) * 0 for all tEl 0, I I. the function t 1--> sign A :(x) is a constant
which clearly equals (;;. I

Now let E= 16 J , ... ,6/1l be any set of pure functionals which satisfies
P6lya's condition.

We say that £! = 16; '''', 6~ f arises from E by replacing the functional
6 = VCiI E E with V~kl. if 6' = V~kl. 6' = 6 for i * i . and if E' also fulfils10 • x • .;.' 10. ~. I I 0

P6lya's condition (in particular, y~kl rf E).

LEMMA 4.2. If in E the functional 6;11 = y~/) is replaced by y~/' II. then
the signs (;j and (;; of the respective basic polynomials of E and E' are related
bv (;' =-(;" (;' =£. (i*i). J,,,III-Il is renlaced bv ,,(/I Il. then £' =£. 'or

• in /0· I 1 0 J JaY • J h 1 I J I

all i = I ..... n. The same holds if yV' is replaced by y~i Il.

Proof For the first statement, we consider the set D( consisting of the
functionals 6; (i*io) and (l-t)y~j)-ty~+l) (O~t~ 1). Then Dr fulfils
(A)-(C) of Section 2. except for the different norming of the first term.
which is obviously not relevant. For t * I. it follows from Lemma 4.1 that
the basic polynomials of Dr all have the same signs as their counterparts in
Do = E. For continuity reasons, this remains true for t = I. But E' differs
from D I only in that condition y~/' 11 in E' is replaced by _y~/'[I in D[.
This proves the first statement. For the second one, we construct an
analogous set D( using the condition (I - t)y~"-II + ty~"- Il. Note that
Mj _ 1 - J= 0 for J= n - 1 in this situation, as there is exactly one condition
of order n -- I in D(. Clearly, Corollary 3.2 applies to Dr. For the third
statement we use (v hi - I I + (I -- t) y~i) in a similar way. I

To determine the signs of the basic polynomials it is convenient to number
the conditions in E as follows:

Let 6[ =.1':/". 62=y~/21 ..... 6{// =;';/ml be the conditions at a in increasing
order. i.e. Ji <Jk if i < k, and let 6{// + I = yj,im +I) .... , (5/1 = yj/'" be the conditions
at b in decreasing order, i.e.. Jk <J; if i < k.

THEOREM 4.3. Let D satis/v the requirements of Corollat~)' 3.2 and let its
elements be indexed according to the above numbering of its underlying sel
E. Then the signs of its basic polynomials are

/:;= (-Ir- i " I

£; = (_1)"4 i

for i = L.... m.

for i = m + I,..., n.
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Proof We may in fact restrict us to a set of pure conditions by Lemma
4.1. If this set happens to be ! y~i) I0 ~ i ~ n - I r. then

A.( ) = ~ (X - Q) i
I X ., b •

I. -Q

so that E, = I for all i in this case. Now the idea is to move first .)" = Y;," \1
to its final position YbJ,,), then c5" ~ I = Y;: 2) to Y6J" I l, and so on, doing this
by repeated application of the replacements described in Lemma 4.2 and at
the same time counting all sign changes. Assume that this has been done for
(5". c5" \.... , c5k+ I for some k > m. Then, as k > m, there is no condition of
order n-I, so we may replace c5k=y~,k-l) with, successively,y;t',Y;,k+ll,....
.1';," 1), Yh" II. Yb" 2) .... , y1ik l, without violating P6lya's condition. By Lemma
4.2 the signs E" i =Ie k, remain unchanged during this process, whereas Ek is
changed n - k times, so that finally Ek = (~I)" i k. After doing this for
k = m + 1, we move c5 m = y~m~ \\ to yyml, changing Em m - j m -~ I times, and
so on. until 6 1 is in its final position. This finishes the proof. I

A dded in proof With respect to the particular numbering used in Ihis theorem. it is even
true that the polynomials cIA I ..... c"A" form a Descartes system on (a. b). A more general
result will be proved in a forthcoming paper.
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